The Landscape of Parental Leave-Taking in the United States

Rebecca Jack, Daniel Tannenbaum, and Brenden Timpe *

October 15, 2025

Abstract

This paper leverages new data linkages to provide the most detailed account to date of the length and timing of parental leave in the United States. Most mothers remain employed throughout pregnancy and their child's first year of life, but the average maternity leave lasts only 7.2 weeks. Fathers take less than 1 week on average. Despite a steady increase in benefits, average leave duration has declined in recent decades. Our results highlight uneven access and incomplete take-up of parental leave benefits and suggest a modest rise in leave would lead to economically meaningful improvements in maternal health.

JEL: I18, J13, J22

^{*}Department of Economics, University of Nebraska-Lincoln. Jack: bjack2@huskers.unl.edu. Tannenbaum: dtannenbaum@unl.edu. Timpe: btimpe@unl.edu. The authors are grateful to Emily Oster and participants at the University of Nebraska informal seminar series for helpful comments. They authors also thank Morgan Gaspar for excellent research assistance and Seth Kingery for his help in disclosing results. This project was supported by a grant from the Russell Sage Foundation (Grant 2310-45067). Any views expressed are those of the authors and not those of the U.S. Census Bureau. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product. This research was performed at a Federal Statistical Research Data Center under FSRDC Project Number 2593. (CBDRB-FY25-P2593-R12161 and CBDRB-FY25-P2593-R12690)

1 Introduction

Although the United States lacks a national paid parental leave policy, access to benefits has risen steadily in recent years. A growing number of states have enacted paid family leave programs, and the share of private-sector workers with benefits through an employer has nearly quadrupled since the turn of the century. Yet amid this shifting landscape, strikingly little is known about how much leave U.S. parents actually take.

The gap in our knowledge about parental leave is consequential: The short window of time around childbirth is a critical period for investments in maternal health and child development that are likely to have high returns (Almond and Currie, 2011; Paladine et al., 2019). Parents' labor-market activity during this time also has important implications for career continuity and the gender earnings gap (Olivetti and Petrongolo, 2017; Goldin, 2021). Discussions of parental leave often center on the availability of paid or unpaid leave benefits, but U.S. parents rely on a patchwork of allotments from state governments, employers, and family members, making them hard to measure (Horowitz et al., 2017; Goldin et al., 2020). Furthermore, precise measurement of benefits is not sufficient to characterize leave-taking. Benefits may crowd out private arrangements, or their take-up may be incomplete due to a lack of information, liquidity constraints, or career concerns (Rossin-Slater, 2018; Johnsen et al., 2024). Documenting the work activity, leave-taking, and time use of the parents of a newborn requires large-scale, high-frequency data linking their labor supply to the precise timing of the child's birth.

In this paper, we present the most comprehensive picture to date on the length and timing of parental leave-taking in the United States. We link the near-universe of individual fertility histories in the United States to nationally representative data from the American Community Survey (ACS). We leverage repeated cross-sectional surveys to study employment and absences from work, week-by-week around a child's birth. We complement this analysis using data from the American Time Use Survey (ATUS) to validate our survey-based measures and to provide new facts about time investments in maternal health and child development among parents of infants who are 0-5 months old.

We find that parental leave is brief: one-quarter of employed mothers are back to work by week 3, two-thirds are back to work by week 9, and nearly all have returned before the child turns 5 months old. The average leave taken by mothers, including both paid and unpaid spells, lasts 7.2 weeks. First-time mothers take an average of 7.3 weeks. For context, this amounts to about one-seventh the length of the average paid leave benefit in OECD countries, and it is more than a month shorter than the benefit offered by the next-least generous OECD country, Mexico (OECD, 2025). In contrast, fathers in the United States take an average of only 0.6 weeks of leave.

We next show that while many state governments and employers have expanded paid or unpaid leave benefits over the past two decades, the length of parental leave has not increased. The length of the average maternity leave declined from approximately 8 weeks in 2005 to about 7 weeks by 2019.

In contrast, we find that the length of leave varies substantially across states, and is longer in states where women have access to paid leave benefits, either through universal provision of short-term disability insurance or formal paid family leave programs. But even in states where parents have access to paid leave, take-up is incomplete. For example, the average duration of leave-taking by women in California is the longest in the nation at 9.7 weeks, but still falls far short of the 18-20 weeks they are eligible for.¹ These

¹Mothers in California are eligible for benefits from two sources. The state has offered pregnancy benefits through its disability insurance system since 1977, and mothers are eligible for 4 weeks before birth and 6 weeks (or 8 weeks for cesarean birth) after childbirth. Separately, mothers can collect up to 8 weeks of paid family leave benefits. Both sets of benefits pay 60-70 percent of workers' usual salary with minimal eligibility criteria.

results contrast sharply with the near-complete take-up of leave benefits found in the European context (e.g., Dahl et al., 2016), and suggest that other factors, such as information frictions about eligibility or workplace norms against taking leave, limit the amount of leave U.S. parents take. We plan to make these estimates of average parental leave duration, by state, publicly available at our project GitHub site, as a companion to this paper.

We also show that the most important differences in leave-taking by race or education are in the timing—rather than length—of leave. Mothers from more disadvantaged groups take a larger share of their leave in the weeks just before or after birth, but less time in the ensuing months. We find similar patterns by occupation, where mothers in jobs requiring substantial leadership or decision-making spend more time working in the first weeks after childbirth but are also more likely to take extended leave. We find muted differences by child birth order or gender and by the presence of the father in the household.

We investigate and rule out several potential sources of selection or measurement error that would affect these estimates of leave-taking. First, we show that survey response rates change little during the 24 weeks prior to birth and 52 weeks after birth, with the exception being the week of birth, when responses drop by about 23% before immediately recovering in the next week and remaining approximately constant. Second, we show that the demographic composition of respondents changes little in the weeks around parenthood. Third, we show that measurement error in the linkage between children and their parents is negligible in our sample. Fourth, we study whether our ACS leave-of-absence measure in the weeks around parenthood accurately measures taking parental leave, using a complementary sample from the American Time Use Survey (ATUS), and offer supporting evidence that it does.

Our final analysis provides novel evidence that parental leave is associated with greater maternal time investments in activities likely to promote better health outcomes for mothers and infants. We leverage the fact that respondents in the public-use ATUS can be linked to their earlier responses to the Current Population Survey (CPS), which allows us to identify households with infants age 0-5 months. We track the average daily number of minutes parents spend across detailed activities, including work, childcare, and educational and health investments in themselves and their children. Mothers on leave spend more time doing childcare (347 minutes per day) than both mothers at work (168 minutes per day) and fathers (105 minutes per day). Mothers on leave also spend more time on educational investments (52 minutes per day)—time that includes reading and listening, arts and crafts, and teaching—compared to mothers at work (36 minutes per day) and fathers (28 minutes per day). Mothers on leave spend more time sleeping (525 minutes compared to 503 minutes for mothers at work) and more time on socializing and leisure (206 minutes compared to 165 minutes for mothers at work), activities that may support maternal mental and physical health. We study whether fathers increase time investments in childcare when mothers are at work compared to when mothers are on leave, using a subsample of married and cohabiting couples, and find limited evidence of this type of substitution.

This paper contributes to research on parenthood as a driver of the gender earnings gap in the 21st century (Bertrand et al., 2010; Kleven et al., 2019; Goldin, 2021) by providing new and comprehensive measures of parental leave-taking and time investments around childbirth, a crucial inflection point for both the gender earnings gap and child development. Despite the increases in parental leave availability, it is surprising how little is known about actual leave-taking behavior in the United States. Existing evidence is based largely on publicly available data, where the ability to characterize parental leave with precision is limited by small samples or low-frequency measures of fertility and labor-market activity (Han et al., 2009; Rossin-Slater et al., 2013; Baum and Ruhm, 2016; Byker, 2016; Goldin et al., 2020; Timpe, 2024). Related

work studying California uses administrative tax records and claims data (Bana et al., 2018; Bailey et al., 2025), but these sources capture receipt of benefits by workers eligible for benefits, rather than leave taking among the broader population of U.S. workers. Our paper contributes by providing the first large-scale, week-by-week analysis of parental leave in the United States.

This paper also contributes to research on maternal and infant health in the United States, where outcomes lag those of other developed countries and have deteriorated in recent years (Gemmill et al., 2022; Kennedy-Moulton et al., 2022). The medical literature highlights the immediate postpartum period as critical for maternal health (Paladine et al., 2019). This paper is the first to our knowledge to exploit the longitudinal linkage of ATUS to the CPS to study time investments in children's early infancy (age 0-5 months) by mothers.

2 Background: Parental Leave Benefits in the United States

The United States' lack of a national paid family leave policy makes it a unique setting to study parental leave.² In countries with generous allotments of leave, maternity leave typically extends the full length of benefits (Carneiro et al., 2015; Dahl et al., 2016). Parental leave is more difficult to predict in the United States, where workers rely on a mix of public and privately provided benefits, as well as informal sources such as personal savings and transfers from family (Horowitz et al., 2017).

The policy landscape in the United States is marked by unequal—but generally growing—access to parental leave benefits. Despite the limited scope of the federal Family and Medical Leave Act, which guarantees 12 weeks of unpaid leave to about 56% of workers (Brown et al., 2020), Figure A1 shows that most U.S. workers enjoy a right to job-protected leave, with the share rising from 75% in the 1990s to 90% today. Paid family leave benefits are much rarer but also growing—from just 2% of private-sector workers in the late 1990s to 27% today. Those privately provided benefits overlap only partially with the share of workers who can receive paid leave through policies enacted by a growing number of states. Finally, millions of workers have access to a form of paid leave through short-term disability insurance policies, which have provided benefits at childbirth since the 1970s and even earlier in some states (Kamerman et al., 1983; Wisensale, 2001; Timpe, 2024). Table A5 reinforces this picture of growing access to leave, but also highlights the inequity across socioeconomic status, as paid leave benefits are much more widely available among college-educated and salaried workers. These patterns raise questions about who takes parental leave, how long it lasts, and whether it has changed over the last two decades—questions we explore in the following sections.

3 Data and Research Design

3.1 CHCK-ACS Sample

We use the near-universe of birth records from the CHCK, which is derived from Social Security Administration data and connects parents to their children born between 1997 and 2022. More than 90 percent of children are connected to their mother and more than 80 percent are connected to their fathers (Genadek et al.,

²The United States is the only industrialized country without a national paid leave policy. We offer a more detailed picture of U.S. parental leave policy in the Appendix. While European nations vary in the amount of job protection and wage replacement, all offer paid leave, typically 14 to 20 weeks, with 70 to 100 percent of previous wages replaced (Ruhm, 2011).

2022).³ The CHCK includes children's exact dates of birth and allows one to infer birth parity. We link parents in the CHCK at the individual level to their responses in the 2005-2019 restricted-use ACS. The ACS contains comprehensive information about demographic characteristics, labor-market activity, and the exact date of the survey.

Our analysis sample is restricted to parents who are age 18-45 and whose ACS reference week—i.e., the week for which we observe employment and leave-taking behavior—falls within the 24 weeks prior to the birth of a child or the 52 weeks after the birth of a child. Table A1 shows the sample is broadly representative of U.S. parents. First-time mothers are 26.8 years old and first-time fathers are 29.4, levels that are close to national averages over this time period. Among parents of all children, the average mother and father are 28.5 and 31, respectively. Nearly three-quarters of our sample is white. Among mothers, 89 percent have a high school degree and 35 percent have a four-year college degree, closely mirroring aggregate Vital Statistics data. About 62 percent of mothers live with a spouse and 15 percent live with their own parents.

Our linked data allows us to provide the most granular and comprehensive analysis to date on leave-taking, and has four main advantages over prior research. First, in contrast to research that relies on survey household rosters to measure fertility, we can observe parents' leave-taking even before a child's birth. Second, because the sample has the child's date of birth and the date of the survey, the repeated cross-sections of ACS interviews allow us to provide a week-by-week characterization of leave-taking. Third, the one-week reference period of the ACS reduces concerns about recall bias in measuring leave-taking behavior at this high frequency (Clarke et al., 2008). Fourth, because the ACS is a large-scale survey and the CHCK tracks the near-universe of U.S.-born children, our large samples permit a more detailed study of heterogeneity than was previously possible.

Measuring parental leave. We measure parental leave using ACS questions about respondents' labor-market activity in the previous week, which are designed to match the labor force questions from the CPS (Raglin and Holder, 2007). Respondents are asked: "Last week, did this person do any work for pay, even for as little as one hour?" Responses are coded "yes" if the person worked for wages, salary, piece rate, commission, tips, or payments in kind (for example, food or lodging received as payment for work performed); worked in their own business, professional practice, or farm; performed any work in a family business or farm, paid or not; did any part-time work including babysitting, paper routes, etc.; or were on active duty in the Armed Forces. The answer is coded as a "no" if the person's activity was limited to housework or yard work at home, unpaid volunteer work, or school work as a student. Respondents who did not work in the previous week are asked whether they were on layoff or were temporarily absent from a job or business.⁴

We construct two key outcomes: first, an indicator for being employed during the prior week; and second, conditional on being employed, an indicator for being absent from work. Our measure of leave-taking reflects both paid and unpaid leave. This measure would not classify those with intermittent or remote work as being on leave, and instead reflects time spent disconnected from work to focus on recovering from childbirth,

³Construction of the parent-child linkages in the CHCK requires observing the parents on the child's Social Security application form, as well as observing the parent and child living in the same household at some point in time. It does not require parents and children to continue co-residing, so coverage rates are much higher than those obtained using household rosters.

⁴The ACS offers little information on the reason for absence. While the survey asks specifically about layoffs, it aggregates all other reasons into a residual category of absence due to "vacation, temporary illness, maternity leave, other family/personal reasons, bad weather, etc." The ATUS sample, described below, has a dedicated response category for parental leave only. We show in Table A6 that in the 5 months after childbirth, the vast majority of absences for women are due to parental leave and not these other categories. See the Appendix for further discussion on implications of ACS question wording.

caring for an infant, or performing other household duties. This measure is consistent with measures used in prior research and in public policy discussions surrounding parental leave, which emphasize bonding time to promote health and child investments.

Validating our measure of leave-taking An important question is whether this absence measure accurately captures being absent from work. If respondents erroneously classify themselves as absent even if they worked during the week, we may overstate leave-taking; alternatively, if respondents on paid leave mistakenly state that they performed work for pay, we would understate the share on leave. The ATUS is well-suited to assess whether workers' job activity is misclassified, because it asks a question about work in the previous week that closely mirrors the questions asked by the ACS. Crucially, the ATUS also includes an accounting of respondents' time use on the previous day. We use these time use diaries to cross-validate the absence measure, showing that workers who say they are absent perform minimal work, and those who say they are at work are not absent (see Table A4).

3.2 ATUS Sample

We use our main ATUS sample to characterize time use among parents of infants. The ATUS samples a large cross-section of Americans in every year beginning in 2003 and through 2024, and is available through IPUMS (Ruggles et al., 2024). The sample is drawn from the outgoing rotation group of the CPS, and occurs 2-5 months after the final CPS survey date. Time use is recorded for one respondent per household, and we focus on the respondent parent's time use across categories. The respondent's employment and demographic information is recorded as in the prior CPS surveys. In addition, the respondent is asked to provide a detailed 24-hour time diary over the previous day's activities, which are classified into 400 detailed time use categories (Hamermesh et al., 2005).

To identify parents with infants, we limit the sample to those who in their final CPS interview have either no child present or have a youngest child at least 1 year old, and in their ATUS interview have a youngest child age 0. The ATUS occurs between 2-5 months after the CPS survey, and thus these households have infants between 0 and 5 months old.⁵ We further restrict the sample to respondents age 18-45 with an own child in the household, to remove the few cases where grandparents or extended family are completing the time diary. We do not restrict to the first-born child unless noted. Our main ATUS sample does not restrict to responses on particular days of the week, but we present robustness to restricting our sample to weekdays. While for some subgroups the sample sizes become small, most have a few hundred individuals. We measure parental leave in the ATUS sample using the same question as described above for the ACS analysis.

3.3 Research Design

Define event time as $r = t - t_i^*$, where where t_i^* is the week in which parent i's child is born and t is the week prior to their ACS interview to accommodate the survey's focus on work in the prior week. We estimate the regression:

$$y_{it} = \sum_{r=-24}^{51} \eta_r D_r + X_{it} \delta + \epsilon_{it}$$

⁵The IPUMS version of the ATUS has the month and year of the survey, as well as the month and year of the outgoing CPS survey. In some tables we present results by the number of months between surveys, which allows us to study parents with infants of 0-2 months, 0-3 months, 0-4 months, and 0-5 months.

where D_r is a series of indicators for time relative to birth and X_{it} is a quadratic in de-meaned age. For transparency, and because our results are not sensitive to controls, we do not add additional covariates. Our main estimates $\hat{\eta}$ are regression-adjusted means of outcome y_{it} .

We estimate the average duration of leave by summing our estimate of the share of employed workers on leave between event weeks r = -4 and r = 23. This statistic captures the average number of weeks that a parent is on leave in the month prior to childbirth (r = -4 through -1) and the six months after childbirth (r = 0 through 23). We also estimate leave duration over time, across states, and by demographic groups. For subgroup regressions, we pool event weeks r over three time periods: the month prior to birth (r = -4 to -1), the month after birth (r = 0 to 3), and the next five months (r = 4 to 23). The sum of these three time periods comprises the 7-month span we use to estimate total leave length.

Our analysis requires the assumption that the timing of respondents' ACS interview is effectively random with respect to the date of childbirth. To validate this assumption, we show that survey response rates change little with parenthood, except in the week of birth, when responses drop by about 23% before immediately recovering and remaining stable (see Appendix Figure A2). We also show there are minimal compositional changes in respondents around parenthood, and that the linkage between ACS and CHCK accurately measures parenthood (see Appendix Table A2).

4 Results

4.1 How Much Leave Do U.S. Parents Take?

We present parents' labor-market activity, week by week, in the six months before and year after the birth of a child. Figure 1 provides these estimates for the following outcomes: (i) an indicator for being currently employed; (ii) an indicator for being currently employed and at work in the prior week; or (iii) an indicator for being absent from work, conditional on employment.

Figure 1a documents parents' employment and time spent at work in the weeks around the birth of a child. Approximately 70 percent of women are employed as of 24 weeks prior to birth. The vast majority are also actively working: only about 3 percent of women are employed but absent 6 months prior to a birth. Mothers' employment steadily declines in anticipation of childbirth, falling to 64 percent by the week prior to birth. At the same time, the share actively working drops sharply in the week of birth. The large gap between the share employed and the share at work makes clear that taking a leave of absence is far more common than labor force exit. Notably, a large share of mothers—roughly one-quarter of all mothers, and about 40 percent of those employed—do at least some work for pay even in the first weeks after giving birth.

Figure 1a also shows that fathers' work activity responds little to the birth of a child. The share employed remains near 93 percent throughout our sample period. Fathers are more likely to be actively working at any point, with about 1 percent absent at any given time period. The exception is the three-week period starting with the birth of a child, when about 6 percent of fathers are absent from a job.

Figure 1b shows the share of employed parents who are absent from work. While the share of mothers on leave rises during the third trimester of pregnancy, leave generally begins no sooner than the final few weeks before birth. The share of employed mothers on leave peaks in the second week after birth at nearly 60 percent. While 95% confidence intervals are omitted for clarity, they rule out deviations of more than 1.5 percentage points in either direction, underscoring the large ACS samples and the precision of our estimates. In the second month after the child's birth, the share on leave decreases steadily, and by week 19 only about

6.6 percent of employed women are on leave. These facts imply that nearly 95 percent of women in the United States take fewer than 19 weeks leave, which is about the length of the average paid leave policy in OECD countries other than the United States (OECD, 2023, Figure 23.1).

Our estimate of the average length of leave, which sums the share on leave from 4 weeks prior until 24 weeks after childbirth, suggests that U.S. mothers take 7.2 weeks of leave on average. A more conservative estimate would net out a baseline share of parents on leave to account for the fact that some absences can be accounted for by factors plausibly unrelated to parenting, such as vacation or sick time. This method delivers an average length of 7.0 weeks. Figures 1a and 1b show that around 95 percent of fathers take zero weeks of leave, and the average paternity leave lasts only 0.6 weeks.

We depict trends in the length of parental leave over the last two decades in Figure 2. For each birth year, we construct the leave duration by summing the share of workers who are absent from work in each period from week r = -4 to 23. The main finding is that in the last pre-Covid year (2019), women take approximately 7 weeks of leave, while men take approximately 0.5 weeks of leave. Women's leave has actually declined since our earliest sample year, 2005, when it was close to 8 weeks. The decline is surprising because many U.S. states have increased the generosity of paid parental leave and many U.S. employers have added parental leave benefits, as shown in Figure A1.⁶ While many of these programs also apply to men, we find little change in the length of paternity leave.

4.2 Who Takes Parental Leave?

The relatively short duration of parental leave in the United States—even in the first weeks of a child's life—may be driven by a range of factors, including lack of access to leave benefits, workplace demands, concern about career implications, or prevailing social norms regarding child care and parents' careers. While we cannot disentangle these mechanisms, in this section we explore heterogeneity in the length of leave that provides suggestive evidence of factors that affect parents' leave-taking decisions.

We find a striking degree of heterogeneity across states in leave-taking. Figure 3 shows that states along the west coast and in New England take upwards of 7 weeks of leave, while states in the Great Plains and a few in the South, including Arkansas and Mississippi, and Mountain West, including Montana, Utah, and Arizona, take fewer than 5 weeks of leave. The clearest source of heterogeneity is the availability of paid leave. Mothers take the longest leaves in states with long-standing STDI pregnancy benefits and relatively recent paid family leave programs, led by California (9.7 weeks), New Jersey (9.4 weeks), and Rhode Island (9.1 weeks). Nevertheless, there is substantial variation even among states without paid leave, ranging from as low as 4.2 weeks (South Dakota) to as long as 6.9 weeks (Pennsylvania).

The influence of state-provided paid leave is also reflected in Figure 4, which reports estimates of leave-taking by demographic subgroups, separately for the month prior to birth, the month after birth, and the next five months. Mothers in states with paid leave take 9.4 weeks of leave (sum of the three sections of the bar), 2.5 more weeks than those in states without paid leave. Fathers with access to state-provided paid leave take 0.32 more weeks than those without.⁷ This result highlights the importance of measuring actual leave taken, rather than access to leave benefits. Mothers in states with paid leave policies take shorter

⁶Although part of this decline may be attributable to the minor re-design of the ACS employment questions after 2007 (Raglin and Holder, 2007), the length of maternity leave also declined during the 2008-2019 period, when the ACS employment questions were consistent.

⁷For access to paid leave, we classify states as offering paid leave to mothers if they have either universal STDI or a state-level paid family leave program in the year of birth. Fathers, who are not eligible for STDI pregnancy benefits, are classified as having "state paid leave" only if their child is born in a state and year where paid family leave programs have been instituted.

leaves than their benefits allow, while mothers in states without universal leave take more leave than we might expect given their benefits.

In contrast, Figure 4 shows relatively little heterogeneity in length across socioeconomic and demographic groups. Groups defined by race or education and experience take very similar amounts of leave in total, although the time off is much more concentrated in the weeks just before and after birth for more disadvantaged groups. Relative to college-educated women, less-educated mothers take about twice as much leave in the month before birth (0.3-0.5 weeks) and 30% more leave in the first month after (0.5-0.6 weeks). In Appendix Table A3, we find similar results when analyzing differences by the intensity of tasks like leadership, decision-making, and physical demands (Deming, 2021; Tannenbaum and Timpe, 2025). We find little differences in leave-taking across mothers' demographic groups, and we find no subgroup of fathers that take as much as 1 week of leave.

4.3 Time Use Among Parents of Infants

We next use the ATUS sample to study how parents of infants spend their time. A strength of the data is that individuals are longitudinally linked to their final CPS survey responses 2-5 months earlier, allowing us to measure parents who had a newborn in between the CPS outgoing survey and the ATUS survey.⁸ We take the sample of mothers of infants and classify them based on their employment status: (i) employed and at work, (ii) employed and on leave, or (iii) those who were employed in their final CPS survey but have since exited the workforce. Given the small share of fathers who take leave or who exit the labor force, we are unable to construct the corresponding subgroups of fathers, but for context we include summary statistics for employed fathers. The first panel of Table 1 reports summary statistics. Consistent with our ACS analysis, mothers on leave at this time frame are more educated and have smaller households.

The second panel of Table 1 shows that mothers on leave spend substantially more time on child care than those at work—and that fathers' provision of child care lags far behind all three groups. Mothers at work do 271 minutes of work per day, on average. Mothers on leave spend almost zero time working, as expected, a finding that once again validates our use of information on work in the previous week in the ACS to study leave-taking. They instead devote much more time to childcare than working mothers (820 minutes per day compared to 514 minutes per day) and slightly more than mothers who exit (808 minutes per day). Fathers spend much less time on childcare than all groups of mothers (394 minutes per day). Only about half of the 121-minute gap in child care time between working mothers and working fathers is explained by fathers' longer hours at work.

Table 1 also documents differences across groups in time inputs to mothers' physical and mental health. We find that mothers on leave get slightly more sleep on average compared to mothers who are at work (525 minutes per day compared to 503 minutes per day). Note that these modest differences don't capture differences in the timing or quality of sleep. We proxy for sleep quality by leveraging the ATUS data on when activities are occurring, constructing an indicator for any childcare occurring during the night (12:00AM to 4:59AM) and the total number of these occurrences. We find that mothers on leave do more childcare

⁸As a validation of our approach to measuring households with infants, note that in Table 1 the household size variable in the ATUS compared to the CPS outgoing survey shows approximately 1 person added to the household, which is what we expect, since these households by construction have added an infant between surveys.

⁹If we restrict the sample to weekday surveys, mothers work 333 minutes per day (see Table A9).

¹⁰Mothers on leave do less than 7 minutes of work for pay on average. This average is driven by the 7.9 percent of the sample with non-zero work for pay, and the median in this group is 30 minutes, suggesting little mis-measurement among this population.

during the night: 71% perform some child care during these early-morning hours, with 1.4 interruptions on average.¹¹ Fathers get less sleep overall, consistent with the overall gender gap in sleep (Burgard and Ailshire, 2013), but only about 1 in 6 care for the child during the night. We also find that mothers on leave spend more time on socializing and leisure (206 minutes per day compared to 164 minutes per day), a potentially important input given the role of social support in prevention of postpartum depression (Stewart and Vigod, 2016). These differences remain significant even after conditioning on individual controls (Table A8).

5 Discussion

This paper provides new and comprehensive evidence on parental leave in the United States, using large-scale, nationally representative survey data linked to administrative birth records.

Our analysis shows that the vast majority of parents, including mothers, remain employed after having children, and most mothers—but few fathers—take some parental leave. Yet despite rising access to paid and unpaid leave benefits, leave duration over the past two decades has not increased. We find that parental leave duration varies substantially across states, and individuals in states with paid leave programs have higher leave durations. But we find that take-up is far from complete even in states with paid leave, contrasting sharply with the near-complete take-up rates found in the European context. Overall, parental leave is brief—only 7.2 weeks for mothers, with one-quarter back at work by week 3, and a few days for fathers.

What are the implications of these findings for family policy in the United States? A full accounting of the costs and benefits of parental leave—including implications for the gender wage gap, child development, and even fertility rates (Olivetti and Petrongolo, 2017)—are beyond the scope of this paper. But one important consideration is maternal health, an area where the U.S. lags other developed nations (Gemmill et al., 2022; Kennedy-Moulton et al., 2022). When U.S. policymakers adopted the FMLA in 1993, they sought to give mothers access to 12 weeks of unpaid leave, yet the average mother takes far less time off from work. How would maternal health outcomes change if the average maternity leave reached the legislated goal of 12 weeks?

We draw on estimates from Bütikofer et al. (2021), who study a 1977 Norwegian policy that resulted in an 18-week increase in time spent at home after childbirth. Crucially, the policy had no impact on income, suggesting their estimates isolate the impact of time spent at home, holding financial resources fixed (Carneiro et al., 2015). Bütikofer et al. (2021) show that the expansion of paid leave decreased hypertension, obesity, and the share of mothers experiencing pain at age 40. Applying these estimates to the U.S. would suggest that reaching the 12-week benchmark would lead to a 2.7 percent decline in the share of mothers with hypertension, a 10-percent decline in obesity, and a 4 percent decline in the share experiencing pain. 12

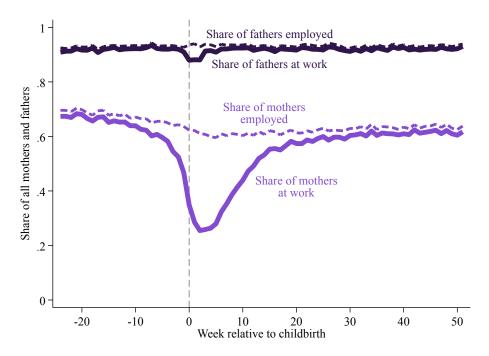
These figures are subject to caveats—they are based on the effects of a historical policy in a Nordic country, and a level of benefits that is small by modern standards but nevertheless more generous than current U.S. policy. Yet these results suggest the debate over expansions of parental leave have economically meaningful stakes. To the extent that leave has diminishing returns, the maternal health benefits of longer leave in the United States may be even higher than those found in Norway. In a country where leave is short and unequally distributed—a meaningful share of U.S. mothers take no measurable time away from work at

¹¹Note that the time use variable for sleeping includes activities like "cat napping," "dozing," and time spent falling asleep or waking up. This measure therefore likely overstates the true amount of sleep per night.

¹²See Appendix Section B.5 for the details on these calculations.

all—the returns to even modest policy measures may be substantial.

References


- Almond, D. and Currie, J. (2011). Human Capital Development before Age Five. Handbook of Labor Economics, Elsevier.
- Bailey, M., Byker, T., Patel, E., and Ramnath, S. (2025). The Long-Run Effects of California's Paid Family Leave Act on Women's Careers and Childbearing: New Evidence from a Regression Discontinuity Design and U.S. Tax Data. *American Economic Journal: Economic Policy*.
- Bana, S., Bedard, K., and Rossin-Slater, M. (2018). Trends and Disparities in Leave Use under California's Paid Family Leave Program: New Evidence from Administrative Data. *AEA Papers and Proceedings*, 108:388–391.
- Baum, C. L. and Ruhm, C. J. (2016). The effects of paid family leave in California on labor market outcomes. Journal of Policy Analysis and Management, 35(2):333–356.
- Bertrand, M., Goldin, C., and Katz, L. F. (2010). Dynamics of the Gender Gap for Young Professionals in the Financial and Corporate Sectors. *American Economic Journal: Applied Economics*, 2(3):228–255.
- Brown, S., Herr, J., Roy, R., and Klerman, J. A. (2020). Employee and Worksite Perspectives of the FMLA: Who Is Eligible? Technical Report Produced for the U.S. Department of Labor, Chief Evaluation Office, Abt Associates Inc, Rockville, MD.
- Burgard, S. A. and Ailshire, J. A. (2013). Gender and Time for Sleep among U.S. Adults. *American Sociological Review*, 78(1):51–69. Publisher: SAGE Publications Inc.
- Byker, T. S. (2016). Paid Parental Leave Laws in the United States: Does Short-Duration Leave Affect Women's Labor-Force Attachment? *American Economic Review: Papers and Proceedings*, 106(5):242–46.
- Bütikofer, A., Riise, J., and Skira, M. M. (2021). The Impact of Paid Maternity Leave on Maternal Health. *American Economic Journal: Economic Policy*, 13(1):67–105.
- Carneiro, P., Løken, K. V., and Salvanes, K. G. (2015). A flying start? Maternity leave benefits and long-run outcomes of children. *Journal of Political Economy*, 123(2):365–412.
- Clarke, P. M., Fiebig, D. G., and Gerdtham, U.-G. (2008). Optimal recall length in survey design. *Journal of Health Economics*, 27(5):1275–1284.
- Dahl, G. B., Løken, K. V., Mogstad, M., and Salvanes, K. V. (2016). What is the case for paid maternity leave? The Review of Economics and Statistics, 98(4):655–670.
- Deming, D. J. (2021). The Growing Importance of Decision-Making on the Job. NBER Working Paper 28733.
- Gemmill, A., Berger, B. O., Crane, M. A., and Margerison, C. E. (2022). Mortality Rates Among U.S. Women of Reproductive Age, 1999-2019. *American Journal of Preventive Medicine*, 62(4):548–557.
- Genadek, K. R., Sanders, J., and Stevenson, A. J. (2022). Measuring Fertility using Administrative Data from the U.S. Census Bureau. *Demographic Research*, 47(2):37–58.
- Goldin, C. (2014). A Grand Gender Convergence: Its Last Chapter. American Economic Review, 104(4):1091–1119.
- Goldin, C., Pekkala Kerr, S., and Olivetti, C. (2020). Why Firms Offer Paid Parental Leave: An Exploratory Study. NBER Working Paper 26617.
- Goldin, C. D. (2021). Career and Family: Women's Century-Long Journey Toward Equity. Princeton University Press, Princeton, New Jersey.
- Hamermesh, D. S., Frazis, H., and Stewart, J. (2005). Data Watch: The American Time Use Survey. *Journal of Economic Perspectives*, 19(1):221–232.

- Han, W.-J., Ruhm, C., and Waldfogel, J. (2009). Parental leave policies and parents' employment and leave-taking. *Journal of Policy Analysis and Management*, 28(1):29–54.
- Horowitz, J., Parker, K., Graf, N., and Livingston, G. (2017). Americans Widely Support Paid Family and Medical Leave, but Differ Over Specific Policies. Pew Research Center.
- Johnsen, J. V., Ku, H., and Salvanes, K. G. (2024). Competition and Career Advancement. *The Review of Economic Studies*, 91(5):2954–2980.
- Kamerman, S. B., Kahn, A. J., and Kingston, P. (1983). *Maternity policies and working women*. Columbia University Press, New York.
- Kennedy-Moulton, K., Miller, S., Persson, P., Rossin-Slater, M., Wherry, L., and Aldana, G. (2022). Maternal and Infant Health Inequality: New Evidence from Linked Administrative Data.
- Kleven, H., Landais, C., and Søgaard, J. E. (2019). Children and Gender Inequality: Evidence from Denmark. American Economic Journal: Applied Economics, 11(4):181–209.
- OECD (2023). Joining Forces for Gender Equality: What is Holding Us Back? OECD Publishing.
- Olivetti, C. and Petrongolo, B. (2017). The Economic Consequences of Family Policies: Lessons from a Century of Legislation in High-Income Countries. *Journal of Economic Perspectives*, 31(1):205–230.
- Paladine, H. L., Blenning, C. E., and Strangas, Y. (2019). Postpartum Care: An Approach to the Fourth Trimester. *American Family Physician*, 100(8):485–491.
- Raglin, D. A. and Holder, K. A. (2007). Improving the Labor Force Questions in the American Community Survey: The Results of the 2006 ACS Content Test. US Census Bureau [custodian]].
- Rossin-Slater, M. (2018). Maternity and family leave policy. In *The Oxford Handbook of Women and the Economy*. Oxford University Press.
- Rossin-Slater, M., Ruhm, C. J., and Waldfogel, J. (2013). The Effects of California's Paid Family Leave Program on Mothers' Leave-Taking and Subsequent Labor Market Outcomes. *Journal of Policy Analysis and Management*, 32(2):224–245.
- Ruggles, S., Flood, S., Sobek, M., Backman, D., Chen, A., Cooper, G., Richards, S., Rodgers, R., and Schouweiler, M. (2024). IPUMS USA: Version 15.0 [dataset].
- Ruhm, C. J. (2011). Policies to assist parents with young children. Future Child, 21(2):37–68.
- Stewart, D. E. and Vigod, S. (2016). Postpartum Depression. New England Journal of Medicine, 375(22):2177–2186. Publisher: Massachusetts Medical Society _eprint: https://www.nejm.org/doi/pdf/10.1056/NEJMcp1607649.
- Tannenbaum, D. and Timpe, B. (2025). Job Tasks, Leadership, and the Gender Gap after Parenthood. *AEA Papers and Proceedings*, 115:271–275.
- Timpe, B. (2024). The Labor Market Impacts of America's First Paid Maternity Leave Policy. *Journal of Public Economics*, 231:105067.
- Wisensale, S. K. (2001). Family Leave Policy: The Political Economy of Work and Family in America. M.E. Sharpe, Inc.

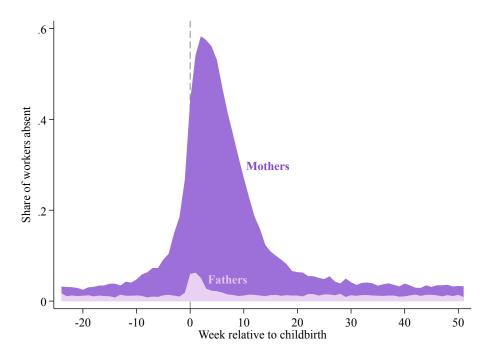
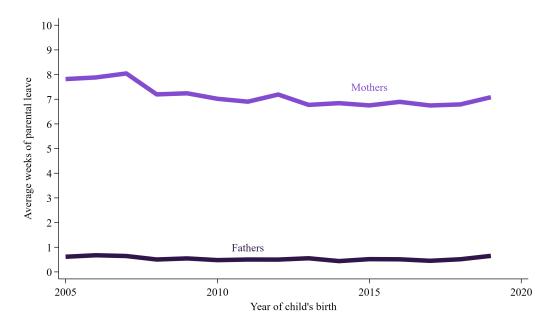

6 Figures

Figure 1: Parental employment and leave-taking around childbirth

(a) Work and employment around childbirth



(b) Absence from work around childbirth

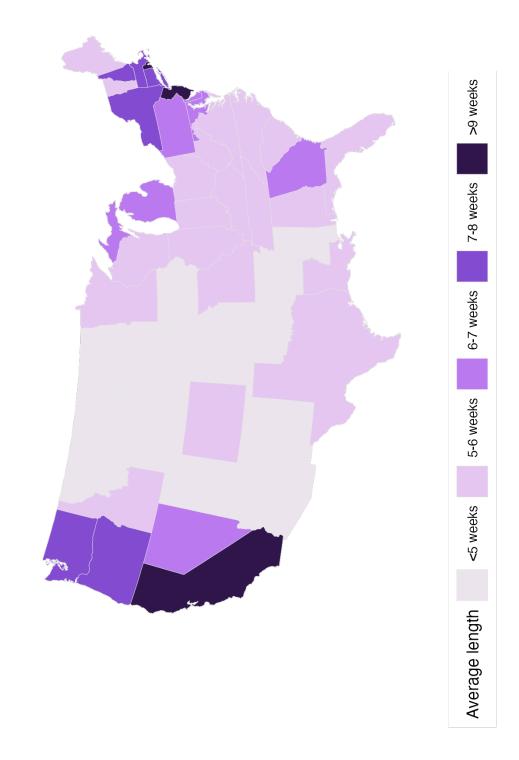

Notes: Panel (a) depicts the results from the estimation of equation 1. The coefficients plot week-by-week trends for mothers and fathers around birth in (i) being employed, and (ii) being employed and not absent from work. The population includes all births, i.e., our sample is not restricted to first birth, and we do not condition on labor force participation. Panel (b) plots estimates the same regression where the dependent variable is an indicator for being absent from work, and the sample includes only those person-weeks where the individual is employed. Results were approved for prelease by the U.S. Census Bureau. (CBDRB-FY25-P2593-R12161)

Figure 2: Trends in length of parental leave

The figure above presents our estimates of leave duration by child birth year, for mothers and fathers. We calculate each year's duration by taking the sample of mothers (or fathers), and multiplying the fraction absent in each week relative to the child's birth by the relative week. Notes: Results were approved for release by the U.S. Census Bureau. (CBDRB-FY25-P2593-R12161)

Figure 3: Length of Leave-Taking Among Women, By State

Notes: The figure above presents average leave duration by state. We estimate these state-specific leave durations in the same way we estimate leave duration in Figure 2, except we estimate leave duration separately by the state of the child's birth. Alaska (5.1 weeks), the District of Columbia (6.3 weeks), and Hawaii (7.1 weeks) are omitted. Results were approved for release by the U.S. Census Bureau. (CBDRB-FY25-P2593-R12161)

Mothers Fathers State paid leave State paid leave No state paid leave No state paid leave Black Black Hispanic Other White Hispanic Other White No college, low experience No college, low experience No college, high experience No college, high experience College, low experience College, low experience College, high experience College, high experience Dad present Ever married Dad not present Never married First child First child Higher-parity child Higher-parity child Girls Girls Boys Boys 2 4 8 0 Weeks of leave Weeks of leave Last month before birth First month after birth Next five months after birth

Figure 4: Average weeks of leave-taking around childbirth by parent characteristics

Notes: This figure depicts leave duration separately by individual characteristics. We estimate leave duration in the same way as in Figure 2, except we compute average leave duration in each of three periods: one month prior to the child's birth, one month after the child's birth, and six months after the child's birth. Results were approved for release by the U.S. Census Bureau. (CBDRB-FY25-P2593-R12161)

7 Tables

Table 1: Time Use Among Parents of Infants

	Mothers (employed, at work)	Mothers (employed, on leave)	Mothers (new exits)	Fathers (employed)
Person characteristics				
Age	30.95	29.92	27.55	31.99
College	0.32	0.61	0.36	0.44
Household size (ATUS)	4.59	3.96	4.12	4.31
Household size (CPS8)	3.35	2.94	3.23	3.27
Usual hours (ATUS)	35.58	37.45		45.25
Usual hours (CPS8)	36.69	38.29	33.50	43.83
Time use (minutes)				
Working	270.96	6.82	4.84	332.36
(25th percentile, cond.>0)	310.00			430.00
(75th percentile, cond.>0)	537.00			600.00
Childcare	168.00	346.50	288.95	104.51
Physical care and looking after children	131.73	294.07	244.90	76.06
Educational investments in children	36.27	52.44	44.05	28.45
Health investments in children	2.70	3.48	15.14	2.12
Secondary childcare	346.45	473.74	518.88	289.21
Household activities	95.82	146.67	140.05	73.21
Socializing and leisure	164.32	205.99	226.24	192.97
Health self-care	0.31	0.38	0.02	0.18
Sleep	503.11	525.02	529.24	493.12
Any childcare (12:00AM-4:59AM)	0.30	0.71	0.51	0.17
Total childcare interruptions (12:00AM-4:59AM)	0.42	1.44	0.97	0.26
Household members				
Grandparent present	0.12	0.09	0.08	0.03
Grandparent or other relative present	0.19	0.10	0.12	0.07
Observations	343	262	68	719

This table provides summary statistics of time use among parents of infants (age 0-5 months) in the ATUS. The employed and on leave sample are those who are currently employed and report being absent from the job due to parental leave. The newly exited sample are those who were working as of the CPS (2-5 months earlier) but are currently (as of ATUS) out of the workforce. Time use is reported for a particular reference day and are in minutes. Variables labeled "CPS8" are measured during the outgoing rotation group survey of the CPS, which is 2-5 months earlier than the ATUS. Time use variables are recorded in minutes of a daily time diary. See Table A7 for details on the construction of time use variables.

Online Appendix

A Background: Parental Leave Benefits in the United States

In this section, we provide a brief history of parental leave policy in the United States and offer evidence, using worker surveys, of recent trends and current levels of access to parental leave through employers.

The current policy debate centers on the needs of parents who are balancing a career with childcare. As recently as the 1950s, however, policy surrounding parenthood aimed at discouraging mothers from working, with many employers and states requiring women to separate from their jobs after marrying or becoming pregnant (Koontz, 1971; Goldin, 1988; Canaan et al., 2022). The modern concept of maternity leave as a voluntary absence to support women's careers began with the civil rights movements of the 1960s (Goldin, 2023), and has since expanded to include fathers to promote bonding with infants and gender equality in parenting.

Policies designed to provide unpaid leave—but with "job protection" guaranteeing the right to return to work—appeared first in 1972 in Massachusetts (Engeman, 2020). More than a dozen states followed suit before the federal Family and Medical Leave Act (FMLA) was enacted in 1993, giving workers a right to take up to 12 weeks of unpaid, job-protected leave after the birth of a child, adoption, or a new foster care placement. While the FMLA is a common source of parental leave benefits, its reach is limited by its lack of paid benefits and relatively strict eligibility criteria. As of 2018, 44% of U.S. workers are not covered by federal FMLA, and coverage rates are even lower among single parents and workers without a college education (Brown et al., 2020). Several states offer unpaid leave benefits that go beyond FMLA, protecting absences for a longer time period or covering workers who would otherwise not qualify for unpaid leave (Bipartisan Policy Center, 2019). ¹⁴

In contrast, the United States has never had a national policy offering paid parental leave, i.e., partial or full wage replacement during a leave of absence to care for an infant. The United States is the only industrialized country without one (OECD, 2025).¹⁵ In the absence of a national paid family leave policy, de facto paid maternity leave began to appear at the state level as early as 1942 in the form of short-term disability insurance (STDI). A series of state laws—and eventually, the federal Pregnancy Discrimination Act of 1978—required STDI policies to include childbirth as a "disability" (Kamerman et al., 1983; Wisensale, 2001; Timpe, 2024). Since STDI is virtually universal in five U.S. states, and a relatively widespread benefit elsewhere in the country, these policies became a common source of pecuniary benefits for mothers on leave. ¹⁶ These policies do not provide paid leave to fathers, and are available only to women who are eligible for STDI through work or a state-run program, but otherwise operate similarly to formal paid family leave. STDI policies typically replace between one-half and two-thirds of usual wages for six weeks (or eight weeks in the case of delivery by cesarean section).

¹³ Job-protected leave under the FMLA is available only to workers in the public sector or at private companies that employ 50 or more individuals within 75 miles of their worksite. In addition, in order to be eligible, employees must have worked at their current employer for 12 months prior to taking leave, working at least 1,250 hours during the 12 months prior.

¹⁴For example, Connecticut offers a longer unpaid leave of 16 weeks for parents who have worked at least 1,000 hours in the last year for an employer with 75 or more employees.

¹⁵While European nations vary in the amount of job protection and wage replacement, all offer paid leave, typically 14 to 20 weeks, with 70 to 100 percent of previous wages replaced (Ruhm, 2011).

¹⁶California, Hawaii, New Jersey, New York, Puerto Rico, and Rhode Island have universal or near-universal STDI coverage. Rhode Island was the first state to cover "normal" childbirth through STDI, but the other states followed suit in the 1960s and 1970s (Koontz, 1971; New York State Senate Task Force on Critical Problems, 1974; Timpe, 2024).

More recently, state governments have created formal paid family leave programs, beginning with California (2004), New Jersey (2008), Rhode Island (2013), and New York (2018). These programs provide between 7 and 14 weeks of paid benefits to both mothers and fathers, and are built on top of existing STDI policies, meaning the total amount of paid leave available is longer. As of 2025, thirteen states have created programs, although many of them have not yet gone into effect.¹⁷

Beyond publicly provided or mandated leave, some workers may have access to leave through their employers. Workers may also rely on other workplace amenities such as paid vacation and sick time to extend their leave duration (Horowitz et al., 2017). In the next subsection, we provide evidence from worker surveys to characterize worker access to paid and unpaid parental leave, including through employers.

In Appendix Section C.2, we use an alternative dataset, the American Time Use Survey Leave Module, to analyze access to benefits across demographic groups.

A.1 Worker Access to Paid and Unpaid Leave Benefits

The patchwork of benefits offered by U.S. and state policies, and by private employers, raises the question: what share of workers actually have access to paid and unpaid leave? We provide evidence from two worker surveys, the National Compensation Survey (1996-2023), and the American Time Use Survey Leave Module (2011, 2017, and 2018), which are both conducted by the U.S. Bureau of Labor Statistics.

Figure A1, which draws on benefit receipt data from the National Compensation Survey and employment counts from the Bureau of Economic Analysis, shows that the share of American workers with access to paid leave is low but has been steadily rising. As recently as the late 1990s, only about 2 percent of private-sector workers had access to paid family leave through an employer (dark purple line), but this figure rises to more than one-quarter by 2023. As discussed in the previous section, workers on maternity leave may also receive partial wage replacement through employer-sponsored STDI, and coverage under these benefits has risen only slightly since the late 1990s, from about 35 percent to 42 percent (middle black line). A third source of pecuniary benefits, state-level paid family leave programs, was non-existent at the turn of the century but has grown to cover nearly one-third of workers by 2023 (medium purple line).

Meanwhile, the share of workers with access to unpaid leave has risen from about 75 percent in the late 1990s to nearly 90 percent in 2023. This growth again highlights the role of employers and state governments, which have expanded unpaid leave coverage beyond FMLA.

Overall, Figure A1 suggests that while the United States remains easily at the bottom among developed countries in providing parental leave benefits, the 21st century has been a period of steady expansion of benefits, driven both by private employers and a handful of state governments. It also highlights the fractured nature of parental leave benefits in the United States. Beyond the sources of paid leave depicted in Figure A1, mothers and fathers may draw on paid vacation time, sick leave, personal savings, and transfers from family and friends (Horowitz et al., 2017).

¹⁷The thirteen states are California, Colorado, Connecticut, Delaware, Maine, Massachusetts, Maryland, Minnesota, New Jersey, New York, Oregon, Rhode Island, and Washington. The District of Columbia has also passed a paid-leave policy. See https://www.dol.gov/agencies/wb/featured-paid-leave.

¹⁸Data on heterogeneity in STDI coverage are scarce, but Levy (2004) found that as of 1993, women were slightly more likely to have coverage than the general population. Single mothers are an exception. STDI coverage is highly correlated with health insurance coverage, and more common among prime-age workers and those with higher levels of educational attainment.

¹⁹The share with formal paid family leave is calculated using data on employment from the Bureau of Economic Analysis. In each year, we calculate the share of workers in a state that has enacted paid family leave.

B American Community Survey

The main analysis in this paper relies on the restricted version of the 2005-2019 American Community Survey (ACS). This section provides further detail on the variables we use to construct our measures of employment and parental leave.

The ACS asks a battery of questions about respondents' labor-market activity. The most important questions for this paper pertain to activity in the previous week. One potential concern is the extent to which question wording may affect the interpretation of our estimates, as well as changes in question wording. This section examines those issues in detail.

The ACS began in 1996, but it did not become a large-scale survey, and one fit to replace the traditional "long-form" decennial Census, until 2005. In that year, the ACS elicited information about labor-market activity with the following series of questions:

• LAST WEEK, did this person do ANY work for either pay or profit? Mark (X), the "Yes" box even if the person worked only 1 hour, or helped without pay in a family business or farm for 15 hours or more, or was on active duty in the Armed Forces.

Respondents who answered "no" were then asked a series of follow-ups:

• LAST WEEK, was this person TEMPORARILY absent from a job or business?

• LAST WEEK, was this person on layoff from a job?

- Yes, on vacation, temporary illness, labor dispute, etc.
- No
Early evaluations of the ACS questions found that they tended to overestimate the size of the labor force
ative to the Current Depulation Current In an effort to deliver estimates that are consistent agrees the

Early evaluations of the ACS questions found that they tended to overestimate the size of the labor force relative to the Current Population Survey. In an effort to deliver estimates that are consistent across the two surveys, Census altered the ACS labor-market questions to mimic the CPS, beginning with the 2008 survey (Raglin and Holder, 2007).

- Yes					
- No					
• LAST WEEK, die	d this person do ANY	work for pay,	even for as l	little as one h	our?
- Yes					
- No					

• LAST WEEK, did this person do ANY work for pay at a job (or business)?

Respondents who answered "no" to both questions were then asked:

• LAST WEEK, was this person on layoff from a job?

- Yes

YesNo

- No
- LAST WEEK, was this person TEMPORARILY absent from a job or business?
 - Yes, on vacation, temporary illness, maternity leave, other family/personal reasons, bad weather, etc.
 - No

The revised 2008 question was implemented after testing that found that the new wording increased the estimated number of employed people without affected the estimated number of unemployed people (Gottschalck et al., 2012). This was seen as desirable because the ACS had produced lower employment levels and higher unemployment rates than the Current Population Survey, the "gold standard" for tracking the labor force.

The main reason for the difference in employment rates between the two sets of questions was the greater sensitivity to "marginal workers," or those who might say they didn't do any work at a job or business last week, but nevertheless respond "yes" when asked if they worked for pay "even as little as one hour." Gottschalck et al. (2012) show that these workers have characteristics consistent with irregular work hours: relative to the general population, they are more likely to be enrolled in school, self-employed, or work as farmers, ranchers, designers, and real estate agents. Among "marginal" workers in the 2008 ACS, 37% were self-employed or unpaid family workers, relative to less than 8% in the general population age 16 and over.

B.1 Implications of the ACS question wording for our estimates

It is crucial to note that the ACS question focuses on performing any work for pay in the previous week. A key question is how workers interpret this question. A worker on parental leave may spent a short time answering phone calls or emails from co-workers, and if so, might be measured in our estimates as working. We interpret our estimates as capturing a "strong" version of parental leave on the extensive margin; those on leave in our estimates are truly disconnected from work and spending all of their time focused on recovery from childbirth, bonding with a new child, etc. We argue that this is a relevant margin, especially considering the literature in health care and economics suggesting that parental leave is important because it provides time for investments in physical and mental health of both parents and children.

Another important point to note in our estimates is that parents are classified as on leave only if they spend the entire week away from work. The implications can be seen in our main figure showing that leave-taking is higher for mothers one week after childbirth than in the week the child is born. This is likely due to the practice of working until childbirth; since the mother worked before the child's arrival, we do not classify her as on leave. This suggests that we are likely to understate the share of parents on leave at any given point in time. Nevertheless, our estimates provide the most high-frequency, detailed information available to date on work activity around childbirth, and we once again note that we are capturing an extensive-margin measure of fully disconnected parental leave.

B.2 Implications of changes in ACS questions for our estimates

The ACS question re-design successfully increased the number of "marginal" workers who were classified as employed. Evidence suggests that these workers had irregular work schedules that might otherwise prevent them from being classified as employed. The result was the sample of employed workers would have been

less likely to be employed in a typical wage and salary position with regular hours. This group makes up a relatively small share of the U.S. labor force, but it is possible that it is particularly important for measuring employment around childbirth, when mothers may turn to work with greater flexibility.

The question re-design may also have implications for our estimates of trends in parental leave. Our sample for these estimates is conditional on employment. It is noteworthy that a visible downward jump in the length of leave coincides with the 2008 change. This suggests that these "marginal" workers may have been less likely to think of themselves as "on leave" from a job—perhaps because their work allowed them the flexibility to alter their hours at will—pushing the estimated length of leave.

It is noteworthy that the effects above appear to outweigh the other change to the labor-market questions, the addition of "maternity leave" to the list of reasons a worker might be absent from a job. We would expect the inclusion of maternity leave to raise the salience of this question and result in higher measures of leave, but in fact we see lower length beginning in 2008.

Most importantly for our results, we see no almost no change at all in the length of maternity or paternity leave from 2008 to 2019, a period when the labor-force questions were held constant. This surprising result—that parental leave did not grow longer over our time period, despite the steady expansion of access to benefits—therefore cannot be driven by changes in measurement in the ACS.

B.3 Testing for selection and measurement error in ACS sample

In this section, we provide further details on our sample of mothers and fathers from the 2005-2019 ACS, linked to birth records from the Census Household Composition Key files. Our sample is restricted to women and men age 18-45 whose were interviewed at a time such that the reference week for the ACS employment questions lies within 24 weeks prior to the birth of a child and 52 weeks after the birth of a child.

Table A1 reports means and standard deviations for mothers and fathers. It also reports means separately for first-time mothers and fathers. Our sample is broadly representative of U.S. parents in this age range. For example, mothers are 28.48 years old on average and 26.8 years old for first-time mothers; among mothers age 18-45 in 2012 U.S. Vital Statistics data, the average age is 28.23 for all women and 26.3 for first-time parents.

We use this sample to construct estimates of employment and leave-taking by week relative to the birth of a child. To provide unbiased estimate, we rely on the assumption that the date of parents' ACS interviews are not approximately random relative to the birth of the child. We explore the validity of this assumption with several exercises.

First, we test for systematic changes in ACS response rates by date relative to childbirth. To minimize the risk of disclosure of confidential information, we do not report sample sizes by week relative to childbirth. However, we can obtain an approximate picture of changes in our sample size using changes in the standard errors on our estimated effects on employment. Specifically, we approximate the sample size in week $r = t - t_i^*$, where t_i^* is the week of childbirth, by calculating $r = \frac{\hat{\sigma}^2}{\hat{\eta}_r(1-\hat{\eta}_r)}$. In this expression, $\hat{\eta}^r$ is the estimated coefficient on an indicator for week r relative to childbirth from a equation 3.3 with employment as the dependent variable. We then use these estimates to calculated approximate changes in the sample size relative to week r = -4.

Figure A2 shows the resulting estimates. Sample sizes change very little across our sample period, consistent with response rates remaining relatively constant. The sole exception is the week of childbirth, when response rates fall by about 23% before recovering and remaining relatively close to their pre-childbirth level.

A second test evaluates the possibility that the composition of our sample changes systematically over event-time periods r. We estimate the regression:

$$x_{it} = \alpha + \sum_{g=-1}^{3} \psi_g D_g + X_{it} \gamma + \nu_{it}$$

where x_{it} is a time-invariant, observable characteristic of mothers and fathers and g indexes 13-week periods relative to childbirth (e.g., g = -1 corresponds to the period between 1 and 13 weeks prior to childbirth). Consistent with our main specification, we include only a quadratic in age in X_{it} . Our estimates $\hat{\psi}_g$ can be interpreted as changes in observable characteristics of our sample relative to the time period 14-24 weeks before childbirth.

Results are shown in Table A2. In all but a handful of cases, we find no statistically significant evidence of a change in observable characteristics. More importantly, the estimates are all economically small. For example, in the last quarter of the child's first year, we see a slightly higher share non-white and average educational attainment rises, but these effects are less than 1% of the overall sample mean. This evidence suggests that compositional changes in respondents over time relative to parenthood are not likely to affect our estimates of leave-taking.

A related, more subtle, bias could arise from measurement error in the linkage between the CHCK and the ACS. If the CHCK mistakenly identifies some persons in the ACS as parents who are not, then the ACS responses will lead us to understate leave-taking. To study this issue directly, we take advantage of an ACS question that asks whether the respondent has given birth in the previous year. Figure A3 plots an event-study where the outcome variable is an indicator for giving birth in the previous year and event-time is defined as the month relative to the birth of a child as measured by the CHCK. The results show that when the CHCK indicates a parent is having a child, the proportion of their ACS responses in the linked sample indicating having a child changes sharply from nearly 0 to nearly 1, exactly what one would expect if the linkage is accurate, and ruling out this source of measurement error.²⁰

B.4 Heterogeneity by occupational task content

Figure 4 in the main text reports differences in leave-taking by state policy and demographic characteristics. We are also interested in how leave-taking interacts with the nature of mothers' and fathers' occupations.

We explore this question by linking mothers in the ACS to O*NET data on occupation-level job tasks. We then use these tasks to construct six measures of tasks. First, to measure the extent to which mothers' jobs involve managing or directing teams, we construct a measure of leadership task intensity (Tannenbaum and Timpe, 2025). We also construct four distinct measures of decision-making, social tasks, routine tasks, and non-routine analytic tasks, following Deming (2021). Finally, we construct a measure of physical intensity from Cortes and Pan (2018). Each index is expressed in standard deviation units. We regress the length of leave—once again, split into the month before birth, month after birth, and next five months—on our task indices, so that the results can be interpreted as the expected difference in leave duration associated with a 1-standard-deviation increase in task intensity.

²⁰An alternative approach would drop respondents who do not report giving birth in the prior year. Our results are robust to this restriction, but we do not adopt it for our main results for two reasons. First, since we cannot use this information to restrict our sample of mothers prior to birth, it would introduce a sharp change in sample selection criteria at the week of birth. Second, for women who are linked in the CHCK to a recent birth but do not report giving birth in the ACS, it is unclear whether the discrepancy is due to error in the CHCK-ACS linkage or due to well-known survey response errors (Bound et al., 2001).

Our results, reported in Table A3, are consistent with the theory that factors like demanding jobs or positive selection into work play an important role in the patterns of leave-taking observed among American mothers. Column 2 shows that mothers with physically demanding jobs take more time off just in the short run—as expected, given common limitations late in pregnancy and just after childbirth—but slightly less time in the next several months. Summing across all three time periods, a mother with a 1-standarddeviation more physically demanding job would be expected to take an extra 2 days of parental leave. We find a similar pattern, although economically much, pattern across jobs as ranked by routine-ness of tasks. In contrast, we see a very different pattern in the remaining task indices. Mothers in occupations that require decision-making ability or offer leadership opportunities take substantially less time off in the short run, compensating only partly by taking longer leave after the first month. These findings are significant because these types of jobs are increasingly associated with career high wages and high earnings growth (Deming, 2021). We find similar results when examining similarly lucrative types of jobs, such as those that require social or non-routine analytic tasks. While these results should be interpreted as descriptive and do not pinpoint a single mechanism, it is noteworthy that these tasks are generally correlated with higher wages and access to paid leave benefits. This suggest that an important channel may be related to the structure of the U.S. workplace and the career costs of taking extended maternity leave (e.g., Goldin, 2014).

B.5 Calibrating the expected stakes for maternal health

Our main results raise questions about the implications of the United States' relatively short maternity and paternity leaves for our understanding of the U.S. labor market and the health of parents and their children. A large literature has studied the implications of parental leave for mothers' career outcomes, with nuanced results that suggest that leave allotments may increase labor-force attachment but also potentially reduce earnings and even increase fertility in the long run (Waldfogel, 1998; Baker and Milligan, 2008; Rossin, 2011; Bartel et al., 2018; Malkova, 2018; Bailey et al., 2025). On the other hand, such policies can also incentivize demand-side responses that widen gender inequality (Thomas, 2020; Timpe, 2024), despite evidence that the cost of parental leave is relatively modest from the firm's perspective (Brenøe et al., 2020; Ginja et al., 2023). A further consideration is the impact on child and maternal health. Several studies have found evidence that access to parental leave may improve children's long-run outcomes (Ginja et al., 2020; Carneiro et al., 2015). A particularly relevant outcome is maternal health, as evidence in the medical and economics literature underscore the health benefits of allowing mothers—and their spouses—time to recover and receive care in the lead-up to and wake of childbirth (Bullinger, 2019; Paladine et al., 2019; Persson and Rossin-Slater, 2019).

To assess the implications of our findings for maternal health, we perform a simple calibration exercise based on our findings and the effects reported by Bütikofer et al. (2021). This section documents our calculations.

Bütikofer et al. (2021) study the impacts of a Norwegian policy that increased paid maternity leave from 0 to 18 weeks. Previous research has found that the expansion resulted in approximately full take-up of paid leave (Carneiro et al., 2015), and (Bütikofer et al., 2021) find no evidence of crowd-out of unpaid leave. Wage replacement levels were 100%. As a result, the authors interpret their estimates as the impact of an increase in time spent at home with no change to income. See Sections III.D and V.C of Bütikofer et al. (2021) for additional details.

Our calibration exercise is therefore based on a thought experiment that would increase the average maternity leave in the United States from 7.2 weeks to the 12 weeks legislated by the Family and Medical

Leave Act of 1993. We view this level as a reasonable benchmark because it is roughly in line with the length of leave included in the FMLA, state unpaid leave laws, and most of the proposals to expand paid parental leave at the state or national level. It is worth noting that 12 weeks of leave would still fall short of the length of leave benefits provided by nearly all other OECD countries.

Bütikofer et al. (2021) estimate the impact of this expansion of maternity leave on maternal health using a regression discontinuity and difference-in-discontinuities design. We use estimates from their preferred regression discontinuity design. Specifically, they estimate that the leave expansion decreased obesity by 2.8 percentage points (s.e. 0.009, pre-reform mean 0.077, panel C of Table 1), decreased the share experiencing pain by 3.7 percentage points (s.e. 0.008, pre-reform mean 0.234, panel C of Table 3), and decreased the share with hypertension by 3 percentage points (10%, see page 83).

Since the Norwegian policy extended leave by 18 weeks, our thought experiment considers an extension that is 27% the size (12-7.2 / 18). We use this to scale the estimates of (Bütikofer et al., 2021), assuming the effects on maternal health are linear in time spent at home after childbirth. The result is a decline in hypertension of 2.7 percent, a 10 percent decline in obesity, and a 4 percent decline in the share experiencing pain.

C American Time Use Survey

This section provides additional results using the public-use American Time Use Survey (ATUS) data. We first use the data to validate the ACS leave-of-absence measure. Second, we use the ATUS to validate our main, restricted-use ACS leave-taking estimates over the 0-5 month period. Third, we use the ATUS Leave Module, which is available for 2011, 2017, and 2018, to characterize access to parental leave benefits, which supplements the background section and documents increasing access to parental leave over time and also widening inequality of access by socioeconomic groups. Fourth, we use our main ATUS sample of parents of infants aged 0-5 months to present several robustness checks. Specifically, we show that differences between mothers on leave and mothers at work are statistically significant and robust to individual controls; we present a version of Table 1 restricted to weekday time diaries; and we provide limited evidence that childcare is not higher among fathers when their partner/spouse is at work vs. on leave.

C.1 Validating the Leave-of-Absence Measure

An important question is whether our measure of a leave of absence in the weeks surrounding a child's birth accurately captures being absent from work. If respondents erroneously classify themselves as absent even if they worked during the week, we may overstate leave-taking. Alternatively, respondents on paid vacation or paid leave might mistakenly state that they are working for pay, leading us to understate the share on leave.

The unique design of the ATUS makes it well-suited to study the extent to which workers' job activity is misclassified in the ACS. The ATUS asks a question about work in the previous week that closely mirrors the questions asked by the ACS. Crucially, the ATUS follows up with a detailed accounting of respondents' time use on a representative day. We use these time use diaries to explore the extent to which workers who say they are on leave actually perform work, and vice versa. Our results, summarized in Table A4 provides evidence against misclassification error. Among all ATUS workers, age 25-64 (excluding the self-employed), approximately 4 percent were absent in the previous week. Among absent workers, almost zero time is spent doing work: the average is 0.6 to 0.8 hours, and the 75th percentile is 0 for all groups except college-educated workers, for whom it is 0.17 hours. These results suggest that when ACS respondents say they are absent

from work, they are truly disconnected from work. Table A4 also shows respondents who say they are at work are unlikely to be on leave. Among respondents who report being employed and at work, we would expect approximately 2 out of 7 to complete the time diary for a weekend or other non-work day, and therefore to report 0 hours. We find that the share of employed workers at work who report working less than one hour is 28 to 33 percent across all subgroups, which is what one would expect if respondents are correctly interpreting the question.

C.2 Access to Leave Benefits

To characterize access to parental leave benefits by demographic groups, we use the ATUS Leave Module, which is available for 2011, 2017, and 2018. Table A5 shows that access to paid parental leave for 18-45 year olds is available to 48 percent of women and 49 percent of men. College-educated workers are nearly 30 percentage points more likely to have access to paid leave compared to non-college educated workers (65 percent vs. 38 percent). Access to paid leave is higher for workers who are non-hourly workers (63 percent) compared to hourly workers (39 percent).

The ATUS, while smaller and offering less precision than the ACS, paints a picture about the length and timing of parental leave that is broadly consistent with the basic facts presented in Section 4.1. Table A6 presents summary statistics of parents of infants (children aged 0-5 months). Approximately 56 percent of mothers of infants are employed, compared to 91 percent of fathers. Approximately 47 percent of mothers of infants are absent from work in the prior week, conditional on being employed, compared to 7 percent of fathers. This figure closely matches our ACS results, which would suggest we would observe between 46 and 50 percent of mothers absent averaged over this time period.²¹

Among mothers of infants, 42 percent report being absent due to parental leave—representing 89 percent of all absences. If we also include vacation, personal, or medical absences—categories that arguably also reflect forms of parental leave—46 report being absent, accounting for 98 percent of absences. These results are broadly consistent with those presented above using the ACS sample, which is reassuring since they come from a different household survey; they also validate our approach of using any absence from work in the weeks surrounding birth as our primary measure of leave. Table A6 also shows that approximately 11 percent of mothers who were employed just prior to birth are out of the labor force as of months 0-5 after birth. Restricting the sample to firstborns only, this share is 10 percent. These exit rates are similar to those shown in Figure 1a, which is based on the ACS, and underscore the point that the vast majority of women who are employed prior to birth return to the workforce.

C.3 Time Use Among Parents of Infants

This subsection provides additional information on the main ATUS sample of parents of infants aged 0-5 months. Table A7 provides details on the time use variable descriptions and associated ATUS codes. Next, we show that the differences in time use among mothers at work and mothers on leave are significantly significant and robust to controls. Third, we present Table 1 restricted to weekday time diaries. And lastly, we consider whether there is evidence for substitution across family members in childcare; specifically, we

²¹We calculate these estimates as follows. First, for mothers of infants in the ATUS, we assume the date of childbirth was uniformly distributed between the date of their time-use interview and the date of their previous CPS interview. We then use our week-specific ACS estimates to calculate the share of mothers we would expect to see absent from work, conditional on appearing in the ATUS with a given lag between the time-use and CPS interviews. We then average across groups defined by the length of lag between CPS and ATUS, weighting by the share of the ATUS sample represented by each group. This calculation suggests we should see between 46-50 percent of working mothers absent.

check whether fathers with a spouse/partner at work do more childcare than fathers with a spouse/partner on leave.

Table A8 presents regression results with and without individual controls. The sample includes mothers of infants who are currently employed. Each column is a separate regression of the time use category in the heading on an indicator for the parent being on leave. In columns 2, 4, 6, and 8, we include individual controls to account for socioeconomic differences across households in which the mother is working compared to those in which the mother is on leave. These controls include an indicator for having a college degree, age, an indicator for having an older child in the household, and an indicator for being married.

The main result is that parental leave allows mothers to shift their time investments away from work and towards caring for their infants. Time spent on childcare is far higher among mothers on leave: 174 more minutes per day, relative to an overall mean of 245 minutes per day—a 71 percent increase that is significant at the 1 percent level. When including individual controls, the magnitude of the difference diminishes only slightly, by 15 minutes. The educational investments subcategory of childcare are 15 minutes per day higher among mothers on leave compared to mothers at work, representing a 35 percent increase from the sample average of 43.6 minutes. This result remains significant at the 10 percent level even after including individual controls. Daily health investments in children are not significantly different between groups, and overall parents make only a few minutes of health investments per day on average. Overall, we find that leave-taking is associated with mothers making greater educational investments in their infant.

The patterns of time use across parental subgroups are quite similar if we restrict to weekday surveys (Table A9), instead of including all days, as in Table 1. One distinction is if we restrict the sample to weekday surveys, employed mothers work 333 minutes per day, more than the 271 minutes per day for employed mothers using both weekdays and weekends.

Substitution across family members in childcare is not directly observed in the data, because the ATUS only collects time use for one member of the household. But the ATUS has information on whether a spouse or unmarried partner is present and also their employment status, and we study fathers' time use when their partner is on leave vs. at work. For this exercise we restrict to respondents age 18-45 who have an opposite-sex spouse or unmarried partner and an infant in the household. This sample restriction means respondents are slightly older and more educated than our main ATUS sample. The main finding, presented in columns 3 and 4 of Table A10, is that fathers with a partner at work actually do less physical caretaking compared to fathers with a partner on leave. Moreover, fathers with partners on leave do not make greater educational investments in their children, compared to fathers with partners at work.²² Because we do not observe a child's total time investments, which may include those of other family members or formal childcare providers, we cannot say whether total health and educational investments in the child are different under different parental working arrangements. Nevertheless, we show that childcare is highly gendered regardless of the working status of the mother and that mothers on leave shift their time towards caretaking.

²²We study whether households with mothers on leave are more likely to have grandparents and extended family living in the household and find that they are (Table 1). These results may reflect socioeconomic differences across households, too, but they are suggestive that extended family provide more caretaking when the mother is working.

Appendix References

- Bailey, M., Byker, T., Patel, E., and Ramnath, S. (2025). The Long-Run Effects of California's Paid Family Leave Act on Women's Careers and Childbearing: New Evidence from a Regression Discontinuity Design and U.S. Tax Data. *American Economic Journal: Economic Policy*.
- Baker, M. and Milligan, K. (2008). How does job-protected maternity leave affect mothers' employment? Journal of Labor Economics, 26(4):655–691.
- Bartel, A. P., Rossin-Slater, M., Ruhm, C. J., Stearns, J., and Waldfogel, J. (2018). Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households. *Journal of Policy Analysis and Management*, 37(1):10–37. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pam.22030.
- Bipartisan Policy Center (2019). State family and medical leave and job-protection laws. https://bipartisanpolicy.org/download/?file=/wp-content/uploads/2019/12/State FMLA Factsheet RV1-3.pdf.
- Bound, J., Brown, C., and Mathiowetz, N. (2001). Measurement Error in Survey Data. In Heckman, J. J. and Leamer, E., editors, *Handbook of Econometrics*, volume 5, pages 3705–3843.
- Brenøe, A. A., Canaan, S. P., Harmon, N. A., and Royer, H. N. (2020). Is Parental Leave Costly for Firms and Coworkers? Issue: 26622 Publisher: National Bureau of Economic Research Series: Working Paper Series.
- Brown, S., Herr, J., Roy, R., and Klerman, J. A. (2020). Employee and Worksite Perspectives of the FMLA: Who Is Eligible? Technical Report Produced for the U.S. Department of Labor, Chief Evaluation Office, Abt Associates Inc, Rockville, MD.
- Bullinger, L. R. (2019). The Effect of Paid Family Leave on Infant and Parental Health in the United States. Journal of Health Economics, 66:101–116.
- Bütikofer, A., Riise, J., and Skira, M. M. (2021). The Impact of Paid Maternity Leave on Maternal Health. *American Economic Journal: Economic Policy*, 13(1):67–105.
- Canaan, S., Lassen, A. S., Rosenbaum, P., and Steingrimsdottir, H. (2022). Maternity Leave and Paternity Leave: Evidence on the Economic Impact of Legislative Changes in High-Income Countries. In Oxford Research Encyclopedia of Economics and Finance.
- Carneiro, P., Løken, K. V., and Salvanes, K. G. (2015). A flying start? Maternity leave benefits and long-run outcomes of children. *Journal of Political Economy*, 123(2):365–412.
- Cortes, P. and Pan, J. (2018). Occupation and Gender. Oxford Handbook on Women and the Economy.
- Deming, D. J. (2021). The Growing Importance of Decision-Making on the Job. NBER Working Paper 28733.
- Engeman, C. (2020). Breaking the liberal-market mold? Family policy variation across US states and why it matters. In *The Palgrave Handbook of Family Policy*, pages 431–458. Cham: Springer International Publishing.
- Ginja, R., Jans, J., and Karimi, A. (2020). Parental Leave Benefits, Household Labor Supply, and Children's Long-Run Outcomes. *Journal of Labor Economics*, 38(1):261–320. Publisher: The University of Chicago Press.
- Ginja, R., Karimi, A., and Xiao, P. (2023). Employer Responses to Family Leave Programs. *American Economic Journal: Applied Economics*, 15(1):107–135.
- Goldin, C. (1988). Marriage Bars: Discrimination Against Married Women Workers, 1920's to 1950's. Working Paper 2747, National Bureau of Economic Research.

- Goldin, C. (2023). Why Women Won. NBER Working Paper 31762.
- Gottschalck, A. O., Kromer, B. K., Howard, D. J., and Hedengren, D. (2012). Evaluation of the 2008 American Community Survey Employment Status Question Change. Technical report, U.S. Census Bureau.
- Horowitz, J., Parker, K., Graf, N., and Livingston, G. (2017). Americans Widely Support Paid Family and Medical Leave, but Differ Over Specific Policies. Pew Research Center.
- Kamerman, S. B., Kahn, A. J., and Kingston, P. (1983). *Maternity policies and working women*. Columbia University Press, New York.
- Koontz, E. D. (1971). Childbirth and Child Rearing Leave: Job-Related Benefits. New York Law Forum, 17:480–502.
- Levy, H. (2004). Employer-sponsored disability insurance: where are the gaps in coverage? NBER Working Paper 10382.
- Malkova, O. (2018). Can Maternity Benefits Have Long-Term Effects on Childbearing? Evidence from Soviet Russia. The Review of Economics and Statistics, 100(4):691–703.
- New York State Senate Task Force on Critical Problems (1974). Insurance and Women: Report of the Senate Task Force on Critical Problems. Albany, NY.
- OECD (2025). OECD Family Database. https://www.oecd.org/en/data/datasets/oecd-family-database.html.
- Paladine, H. L., Blenning, C. E., and Strangas, Y. (2019). Postpartum Care: An Approach to the Fourth Trimester. *American Family Physician*, 100(8):485–491.
- Persson, P. and Rossin-Slater, M. (2019). When Dad Can Stay Home: Fathers' Workplace Flexibility and Maternal Health. Technical Report NBER Working Paper 25902.
- Raglin, D. A. and Holder, K. A. (2007). Improving the Labor Force Questions in the American Community Survey: The Results of the 2006 ACS Content Test. US Census Bureau [custodian]].
- Rossin, M. (2011). The effects of maternity leave on children's birth and infant health outcomes in the United States. *Journal of Health Economics*, 30(2):221–239.
- Ruhm, C. J. (2011). Policies to assist parents with young children. Future Child, 21(2):37-68.
- Tannenbaum, D. and Timpe, B. (2025). Job Tasks, Leadership, and the Gender Gap after Parenthood. *AEA Papers and Proceedings*, 115:271–275.
- Thomas, M. (2020). The Impact of Mandated Maternity Leave Policies on the Gender Gap in Promotions: Examining the Role of Employer-Based Discrimination.
- Timpe, B. (2024). The Labor Market Impacts of America's First Paid Maternity Leave Policy. *Journal of Public Economics*, 231:105067.
- Waldfogel, J. (1998). The Family Gap for Young Women in the United States and Britain: Can Maternity Leave Make a Difference? *Journal of Labor Economics*, 16(3):505–545.
- Wisensale, S. K. (2001). Family Leave Policy: The Political Economy of Work and Family in America. M.E. Sharpe, Inc.

Appendix Figures and Tables

100 80 Unpaid family leave Percent of workers with access 60 40 Short-term disability through employer 20 State-mandated paid leave Paid family leave through employer 2000 2005 1995 2010 2015 2020 Year

Figure A1: Share of workers with access to various sources of parental leave benefits

Figures shows the share of U.S. workers with access to specified sources of parental leave benefits. Data on unpaid family leave, paid family leave through an employer, and short-term disability insurance apply to private-sector workers only and come from the National Compensation Survey. Short-term disability insurance measure does not count workers covered by state-run programs. Share with state-mandated paid leave is constructed using Bureau of Economic Analysis estimates of state-level employment and dates of enactment of formal paid family leave programs, starting with California in 2004.

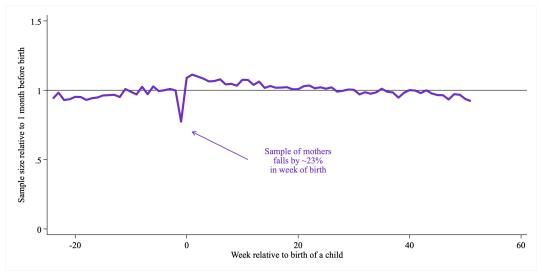


Figure A2: Changes in sample size by week relative to birth

The figure above presents an approximation of the size of our sample of mothers by week relative to childbirth. Approximate sample sizes are shown relative to the size of the sample four weeks prior to birth. Sample sizes are approximated using the standard error for $\hat{\eta}_r$. This approach minimizes the risk of disclosing confidential information. (CBDRB-FY25-P2593-R12161)

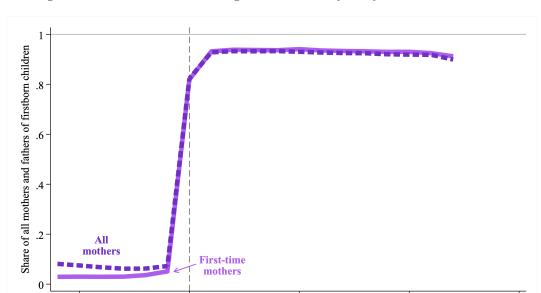


Figure A3: Share of mothers who gave birth in last year by week relative to birth

The figure presents event-study estimates of the share of respondents who report giving birth in the past calendar year, by month relative to birth. Months are four-week increments, where month 0 includes the week of a child's birth and the three weeks afterward. Standard errors are omitted for clarity, and 95% confidence intervals in all time periods rule out values more than 0.005 (half a percentage point) above or below the point estimates. Month relative to birth is measured using CHCK birth record data. Indicator for having a child in last year is measured using ACS survey responses. (CBDRB-FY25-P2593-R12690)

5

Month relative to childbirth

10

15

0

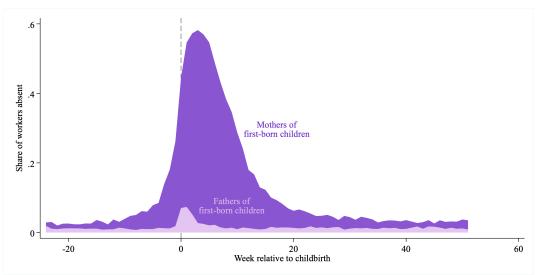

-5

Figure A4: Parental employment and leave-taking around first birth

(a) Work and employment around childbirth

(b) Absence from work around childbirth

Notes: Panel (a) depicts the results from the estimation of equation 1. The coefficients plot week-by-week trends for first-time mothers and fathers around birth in (i) being employed, and (ii) being employed and not absent from work. The population includes parents observed in the 6 months before or year after the birth of their first child, and we do not condition on labor force participation. Panel (b) plots estimates the same regression where the dependent variable is an indicator for being absent from work, and the sample includes only those person-weeks where the individual is employed. Results were approved for release by the U.S. Census Bureau. (CBDRB-FY25-P2593-R12690)

Table A1: Summary statistics: ACS-CHCK sample

	(1)	(2)	(3)	(4)
	Full sa	ample	Firstborn	children
	Mothers	Fathers	Mothers	Fathers
Age at birth	28.48	31.05	26.79	29.43
Age at birtii	(5.94)	(6.10)	(6.18)	(6.28)
Female infant	0.489	0.488	0.488	0.486
remale imalit	(0.500)	(0.500)	(0.500)	(0.500)
Children ever born	2.58	2.45	1.95	1.88
Cinidren ever born	(1.13)	(1.07)	(0.91)	(0.86)
White	0.713	0.741	0.715	0.733
VV III 0C	(0.453)	(0.438)	(0.451)	(0.443)
Black	0.142	0.109	0.139	0.118
510011	(0.350)	(0.312)	(0.345)	(0.322)
Hispanic	0.172	0.168	0.155	0.154
F	(0.377)	(0.374)	(0.362)	(0.361)
High school degree	0.888	0.893	0.893	0.898
8	(0.315)	(0.309)	(0.309)	(0.302)
College degree	0.345	0.349	$0.372^{'}$	0.344
	(0.475)	(0.477)	(0.483)	(0.475)
Ever married	$0.295^{'}$	0.200	$0.374^{'}$	0.288
	(0.456)	(0.400)	(0.484)	(0.453)
Spouse in household	$0.622^{'}$	$0.741^{'}$	$0.563^{'}$	0.654
-	(0.485)	(0.438)	(0.496)	(0.476)
Grandparent in household	0.153	0.101	$0.218^{'}$	0.140
	(0.360)	(0.301)	(0.413)	(0.347)
Observations	896,000	751,000	372,000	333,000

This table provides summary statistics for sample of respondents in the 2005-2019 American Community Survey linked to fertility outcomes in the Census Household Composition Key files. Sample includes parents interviewed during the time span beginning 24 weeks before a birth and ending 52 weeks after a birth. Sex of infant and number of children ever born are measured using the CHCK, and children ever born measures all children born to the parent between 1997 and 2022.

Table A2: Selection into ACS sample by month relative to birth

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Non-Hispanic	Non-Hispanic		Years	Children	Child	Child
	white	Black	Hispanic	of education	ever born	female	parity
Panel A: Mothers							
1-13 weeks before birth	-0.0004	0.0011	0.0021	0.0215*	-0.0021	0.0018	-0.0060
	(0.0024)	(0.0020)	(0.0020)	(0.0118)	(0.0059)	(0.0025)	(0.0047)
0-12 weeks after birth	-0.0022	0.0017	0.0022	-0.0055	0.0043	0.0014	0.0010
	(0.0023)	(0.0019)	(0.0020)	(0.0116)	(0.0057)	(0.0024)	(0.0046)
13-25 weeks after birth	-0.0037	0.0014	0.0028	0.0031	0.0055	0.0001	-0.0002
	(0.0024)	(0.0019)	(0.0020)	(0.0116)	(0.0057)	(0.0025)	(0.0046)
26-38 weeks after birth	-0.0052**	0.0034*	0.0027	0.0162	0.0013	0.0020	-0.0019
	(0.0024)	(0.0019)	(0.0020)	(0.0116)	(0.0057)	(0.0025)	(0.0046)
39-51 weeks after birth	-0.0059**	0.0034*	0.0040**	0.0203*	0.0073	0.0002	-0.0017
	(0.0023)	(0.0019)	(0.0020)	(0.0117)	(0.0057)	(0.0025)	(0.0046)
Mean	0.713	0.142	0.171	13.8	2.58	0.489	1.90
Panel B: Fathers							
1-13 weeks before birth	0.0009	-0.0003	0.0070***	0.0099	0.0024	0.0001	-0.0025
	(0.0025)	(0.0020)	(0.0022)	(0.0141)	(0.0060)	(0.0027)	(0.0048)
0-12 weeks after birth	-0.0028	0.0014	0.0023	0.0073	-0.0033	0.0001	-0.0032
	(0.0025)	(0.0019)	(0.0022)	(0.0139)	(0.0058)	(0.0027)	(0.0047)
13-25 weeks after birth	0.0011	-0.0012	0.0045**	0.0182	0.0150**	-0.0016	0.0034
	(0.0025)	(0.0019)	(0.0022)	(0.0140)	(0.0059)	(0.0027)	(0.0048)
26-38 weeks after birth	-0.0026	0.0016	0.0020	0.0081	0.0020	0.0011	-0.0001
	(0.0025)	(0.0020)	(0.0022)	(0.0140)	(0.0058)	(0.0027)	(0.0048)
39-51 weeks after birth	-0.0009	-0.0024	0.0065***	0.0195	0.0021	-0.0015	-0.0034
	(0.0025)	(0.0019)	(0.0022)	(0.0140)	(0.0058)	(0.0027)	(0.0048)
Mean	0.741	0.109	0.168	13.8	2.45	0.488	1.81

Each row shows the estimated change in the average demographic characteristic of the sample relative to the time period consisting of 14-26 weeks before childbirth. Mean for the full sample shown at the bottom of each panel. Standard errors are clustered by individual. (CBDRB-FY25-P2593-R12690)

Table A3: Leave-taking and occupational task content

	Mean	(2) Ci	(3) hange in wee	(4) ks of leave pe	(5) er 1sd increase	(6) e in task inte	(7) ensity
	Weeks of leave	Physical	Routine	Decision- making	Leadership	Social	Nonroutine analytic
Month before birth	0.705	0.246*** (0.015)	0.030*** (0.010)	-0.244*** (0.013)	-0.183*** (0.015)	-0.211*** (0.015)	-0.194*** (0.013)
Month after birth	2.14	0.199*** (0.019)	0.097*** (0.013)	-0.265*** (0.015)	-0.202*** (0.017)	-0.226*** (0.018)	-0.199*** (0.016)
Next 5 months after birth	4.31	-0.077** (0.036)	-0.141*** (0.026)	0.318*** (0.029)	0.230*** (0.032)	0.324*** (0.034)	0.238*** (0.030)
Observations	896,000	896,000	896,000	896,000	896,000	896,000	896,000

This table provides estimates of the association between occupational task content and the length and timing of maternity leave among U.S. mothers. Column 1 reports average weeks of leave in the specified time relative to childbirth. Columns 2-7 report the coefficient from a regression of weeks of leave on the task intensity of the worker's occupation, measured in standard deviation units. Task content include a measure of leadership from Tannenbaum and Timpe (2025), physical intensity of the occupation from Cortes and Pan (2018), and measures of decision-making responsibility, social tasks, routine, and non-routine analytic tasks from (Deming, 2021). Standard errors are clustered by individual.

Table A4: Characterizing the Absent from Work Variable

	Women	Men	College	Non-College	Hourly	Non-Hourly
Share absent previous week	0.05	0.03	0.04	0.04	0.04	0.04
Conditional on being absent						
Usual hours	37.02	44.39	39.85	40.10	37.90	42.24
Time spent working (hours)	0.67	0.83	0.82	0.66	0.64	0.84
25th percentile	0.00	0.00	0.00	0.00	0.00	0.00
75th percentile	0.00	0.00	0.17	0.00	0.00	0.08
Reason for absence:						
Vacation	0.49	0.55	0.61	0.44	0.44	0.60
Own illness	0.19	0.25	0.09	0.32	0.31	0.11
Other family or personal obligation	0.16	0.14	0.16	0.15	0.14	0.17
Parental leave	0.12	0.02	0.11	0.05	0.07	0.09
Other	0.04	0.04	0.04	0.04	0.04	0.03
Conditional on being at work						
Usual hours	38.91	44.26	42.85	40.94	39.43	44.37
Fraction working <1 hour	0.33	0.28	0.29	0.31	0.33	0.28
Time spent working (hours)	5.20	6.07	5.69	5.64	5.44	5.92
25th percentile	0.00	0.00	0.00	0.00	0.00	0.00
75th percentile	8.33	9.17	8.83	8.67	8.50	9.00
Observations	59,239	55,080	$49,\!852$	$64,\!467$	$59,\!103$	55,141

This table uses ATUS 2003-2023 to understand the employment variable indicating the worker was absent in the previous week. The sample includes workers age 25-64 excluding the self-employed. The table presents sample averages unless indicated.

Table A5: Access to Paid and Unpaid Parental Leave

	Wor	men	M	en	Col	lege	Non-C	College	Но	ırly	Non-F	Hourly
	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N
Paid leave	0.48	4,720	0.49	4,552	0.65	4,303	0.38	4,969	0.39	5,097	0.63	4,175
2011	0.42	1,920	0.39	1,800	0.57	1,553	0.31	2,167	0.30	2,066	0.57	1,654
2017	0.49	1,418	0.54	1,428	0.67	1,380	0.41	1,466	0.43	1,572	0.67	1,274
2018	0.53	1,382	0.53	1,324	0.71	1,370	0.40	1,336	0.44	1,459	0.67	1,247
Unpaid leave	0.79	4,720	0.77	4,552	0.74	4,303	0.81	4,969	0.82	5,097	0.72	4,175
2011	0.79	1,920	0.75	1,800	0.76	1,553	0.77	2,167	0.80	2,066	0.73	1,654
2017	0.80	1,418	0.79	1,428	0.73	1,380	0.83	1,466	0.83	1,572	0.74	1,274
2018	0.79	1,382	0.78	1,324	0.74	1,370	0.82	1,336	0.84	1,459	0.71	1,247

This table uses data from the public-use ATUS Leave Module, which is available for years 2011, 2017, and 2018. We restrict the sample to employed workers who are not self-employed, and are between ages 18 and 45. The paid leave question asks if the respondent is able to take paid leave for birth or adoption of a child in their current job. The unpaid leave question asks if the respondent is allowed to take time off from work without pay for birth or adoption, in addition to their paid leave in their main job. We drop missing responses. We present means and observation counts for several subgroups, including women, men, college degree holders (or more), those with less than a college degree, hourly workers, and non-hourly workers.

Table A6: How Much Leave Do Parents of Infants 0-5 Months Old Take?

	Mot	hers	Fath	ers
	Mean	N	Mean	N
Fraction employed	0.56	1,146	0.91	775
Fraction at work, conditional on employed	0.53	638	0.93	719
Fraction absent, conditional on employed	0.47	638	0.07	719
Fraction on parental leave, conditional on employed	0.42	638	0.03	719
(CPS8-to-ATUS: 2 months)	0.41	68	0.05	74
(CPS8-to-ATUS: 3 months)	0.46	422	0.04	471
(CPS8-to-ATUS: 4 months)	0.30	134	0.02	167
(CPS8-to-ATUS: 5 months)	0.23	14	0.00	7
Fraction with parental leave (or vacation, personal, medical), conditional on employed	0.46	638	0.05	719
Fraction who exit between CPS8 and ATUS	0.11	593	0.03	702
Fraction who exit between CPS8 and ATUS (first born)	0.10	164	0.03	161

This table provides summary statistics of employment and leave-taking among parents of infants (age 0-5 months) in the ATUS. All variables are measured at the time of the ATUS, which is 2-5 months after the CPS outgoing rotation group ("CPS8").

Table A7: Time Use Variable Descriptions and Associated ATUS Codes

Time Use Variable	IPUMS Name	Description and ATUS codes
Working	ACT_WORK	Work and Work-Related Activities (050000). This variable indicates the minutes per day each respondent reported spending work activities such as working, doing activities as part of one's job, engaging in income-generating activities (not as part of one's job), and looking for jobs and interviewing.
Childcare	Researcher-defined	Caring for and Helping Household Children (030100)
Physical care and looking after children	Researcher-defined	Physical care for household children (030101); Organization and planning for household children (030108); Looking after household children (as a primary activity) (030109); Attending household children's events (030110); Waiting for or with household children (030111); Picking up or dropping off household children (030112); Caring for and helping household children, n.e.c. (030199)
Educational investments in children	Researcher-defined	Reading to or with household children (030102); Playing with household children, not sports (030103); Arts and crafts with household children (030104); Playing sports with household children (030105); Talking with or listening to household children (030106); Helping or teaching household children (not related to education) (030107)
Health investments in children	Researcher-defined	Children's Health (030300)
Secondary childcare	SCC_ALL	This variable reports the total amount of time during the diary day that the respondent spent in secondary childcare for all children under the age of 13. This variable is calculated by summing the amount of time during each activity that the respondent reported having a child in care.
Household activities	ACT_HHACT	This variable indicates the minutes per day each respondent reported spending in household activities such as maintaining their household, household management and organizational activities.
Socializing and leisure	ACT_SOCIAL	This variable indicates the minutes per day each respondent reported spending in personal interest or leisure activities such as communicating with others and attending parties and meetings; and leisure activities such as relaxing, playing (passive) games (unless playing with children only), watching television, playing or listening to music, reading, writing, and all hobbies.
Health self-care	Researcher-defined	Health-Related Self Care (010300)
Sleep	BLS_PCARE_SLEEF	Sleeping (010100)
Any childcare (12:00AM-4:59AM)	Researcher-defined	This variable is constructed from the activity-level file, and indicates any physical care for household children (030101) occurring with a start time between 00:00 and 04:59

Table A8: Time Use Among Parents of Infants: Mothers on Leave v. Mothers at Work

	Child	care	Physic	al care	Education	on investments	Health	investments
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental leave	174.302*** (16.342)	158.722*** (16.909)	159.166*** (15.076)	146.218*** (15.659)	15.136** (7.159)	12.504* (7.522)	-0.476 (1.977)	-0.441 (2.221)
Controls		Yes		Yes		Yes		Yes
Mean of outcome	244.56		200.98		43.58		3.76	
Observations	638	638	638	638	638	638	638	638
R^2	0.230	0.277	0.233	0.270	0.011	0.025	0.000	0.013
	Seconda	ry childcare	Sle	еер	Socializing	and leisure	Grandpare	nt or rel.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental leave	118.104***	102.883***	15.894	13.043	37.327***	39.361***	-0.098**	-0.065
	(20.787)	(21.000)	(13.259)	(12.929)	(14.361)	(14.034)	(0.040)	(0.041)
Controls		Yes		Yes		Yes		Yes
Mean of outcome	404.66		515.72		184.16		0.16	
Observations	638	638	638	638	638	638	638	638
R^2	0.065	0.148	0.004	0.053	0.016	0.048	0.018	0.213

This table presents regressions of time use variables on an indicator for the mother being on leave. The sample is restricted to mothers of infants who are currently employed. The coefficient of interest is the indicator for the mother being on leave. The controls in columns 2, 4, 6, and 8 include: an indicator for having a college degree, age, an indicator for having an older child in the household, and an indicator for being married.

Table A9: Time Use Among Parents of Infants 0-5 Months: Weekdays Only

	Mothers (employed, at work)	Mothers (employed, on leave)	Mothers (new exits)	Fathers (employed)
Person characteristics				
Age	31.11	29.88	27.36	32.04
College	0.33	0.58	0.34	0.46
Household size (ATUS)	4.55	3.98	4.26	4.25
Household size (CPS8)	3.33	2.95	3.41	3.17
Usual hours (ATUS)	35.98	37.80		45.75
Usual hours (CPS8)	37.39	38.59	33.31	44.46
Time use (minutes)				
Working	333.42	5.62	6.61	428.02
(25th percentile, cond.>0)	360.00			445.00
(75th percentile, cond.>0)	540.00			600.00
Child care	170.56	369.38	300.32	97.73
Physical care and looking after children	134.48	315.01	248.17	72.20
Educational investments in children	36.07	54.37	52.15	25.53
Health investments in children	3.52	4.69	19.30	2.81
Secondary childcare	298.33	460.59	498.00	219.83
Household activities	79.32	145.03	155.30	65.43
Socializing and leisure	140.51	191.47	199.97	151.35
Health self-care	0.39	0.54	0.03	0.01
Sleep	487.03	522.63	531.54	464.25
Any childcare (12:00AM-4:59AM)	0.30	0.72	0.48	0.18
Total childcare interruptions (12:00AM-4:59AM)	0.41	1.48	0.94	0.26
Household members				
Grandparent present	0.12	0.09	0.11	0.02
Grandparent or other relative present	0.19	0.09	0.13	0.05
Observations	180	131	36	361

This table reproduces Table 2 but restricts to time diaries on weekdays only.

Table A10: Time Use of Fathers by the Mother's Leave-Taking

	Mothers (at work)	Mothers (on leave)	Fathers (partner at work)	Fathers (partner on leave)
Person characteristics				
Age	31.64	30.70	31.94	32.78
College	0.43	0.65	0.45	0.62
Household size (ATUS)	4.38	3.91	4.14	3.92
Household size (CPS8)	3.23	2.87	3.09	2.90
Usual hours (ATUS)	34.81	37.20	45.86	45.89
Usual hours (CPS8)	37.03	38.07	43.68	44.23
Time use (minutes)				
Working	247.55	5.37	349.19	306.26
Childcare	183.78	348.00	114.16	129.75
Physical care and looking after	146.63	293.74	88.68	104.78
Educational investments	37.14	54.25	25.48	24.97
Health investments	2.32	3.21	6.02	0.33
Secondary childcare	374.25	486.72	273.69	302.24
Household activities	99.80	148.98	77.80	77.65
Socializing and leisure	167.03	206.05	173.59	199.98
Health self-care	0.37	0.37	0.00	0.00
Sleep	497.58	517.38	476.25	485.52
Any childcare (12:00AM-4:59AM)	0.36	0.71	0.18	0.28
Total childcare interruptions (12:00AM-4:59AM)	0.50	1.43	0.23	0.48
Household members				
Grandparent present	0.04	0.03	0.01	0.01
Grandparent or other relative	0.07	0.04	0.03	0.02
Observations	228	235	188	169

This table uses the ATUS and restricts to parents age 18-45 with an infant (age 0-5 months). We further restrict the sample so that the respondent has an opposite-sex spouse or unmarried partner in the household, and so that both the respondent and the partner are employed. We then provide summary statistics for four (mutually exclusive) groups in the household: (i) mothers, employed and at work, (ii) mothers, employed and on leave, (iii) fathers with their spouse or partner at work, (iv) fathers with their spouse or partner on leave.